En Küçük Ortak Kat (EKOK) Nedir?
En Küçük Ortak Kat (EKOK), iki veya daha fazla sayının tam bölenlerinin ortak olduğu en küçük sayıdır. EKOK, matematikte çeşitli problemleri çözmek için kullanılan önemli bir kavramdır. EKOK, özellikle kesirlerin toplama, çıkarma, çarpma ve bölme işlemlerinde kullanılır.
En Küçük Ortak Kat Nasıl Bulunur?
En Küçük Ortak Katı bulmak için aşağıdaki adımları izleyebilirsiniz:
- Verilen sayıları çarpanlarına ayırın.
- Her bir çarpanın en yüksek üssünü alın.
- Çarpanları ve üslerini çarparak EKOK’u bulun.
En Küçük Ortak Kat (EKOK) Örnekleri:
Örnek 1:
12 ve 18 sayılarının EKOK’unu bulalım:
12 = 2^2 * 3
18 = 2 * 3^2
Çarpanları ve en yüksek üsleri çarparak EKOK’u bulalım:
2^2 * 3^2 = 4 * 9 = 36
Öyleyse, 12 ve 18 sayılarının EKOK’u 36’dır.
Örnek 2:
15 ve 20 sayılarının EKOK’unu bulalım:
15 = 3 * 5
20 = 2^2 * 5
Çarpanları ve en yüksek üsleri çarparak EKOK’u bulalım:
2^2 * 3 * 5 = 4 * 3 * 5 = 60
Öyleyse, 15 ve 20 sayılarının EKOK’u 60’tır.
En Küçük Ortak Kat (EKOK) Test Soruları:
Soru 1:
12 ve 16 sayılarının EKOK’u kaçtır?
a) 24
b) 32
c) 48
d) 64
Doğru cevap: b) 32
Soru 2:
18 ve 24 sayılarının EKOK’u kaçtır?
a) 36
b) 72
c) 108
d) 144
Doğru cevap: b) 72
Soru 3:
25 ve 35 sayılarının EKOK’u kaçtır?
a) 75
b) 125
c) 175
d) 225
Doğru cevap: d) 225
Soru 4:
16 ve 20 sayılarının EKOK’u kaçtır?
a) 32
b) 40
c) 48
d) 64
Doğru cevap: c) 48
Soru 5:
21 ve 28 sayılarının EKOK’u kaçtır?
a) 84
b) 98
c) 112
d) 126
Doğru cevap: a) 84
En Küçük Ortak Kat (EKOK) Çözümlü Sorular:
Çözümlü sorular aşağıda yer almaktadır:
Soru 1:
12 ve 18 sayılarının EKOK’u kaçtır?
Çözüm:
12 = 2^2 * 3
18 = 2 * 3^2
Çarpanları ve en yüksek üsleri çarparak EKOK’u bulalım:
2^2 * 3^2 = 4 * 9 = 36
Öyleyse, 12 ve 18 sayılarının EKOK’u 36’dır.
Soru 2:
15 ve 20 sayılarının EKOK’u kaçtır?
Çözüm:
15 = 3 * 5
20 = 2^2 * 5
Çarpanları ve en yüksek üsleri çarparak EKOK’u bulalım:
2^2 * 3 * 5 = 4 * 3 * 5 = 60
Öyleyse, 15 ve 20 sayılarının EKOK’u 60’tır.
Umarım bu test, çözümlü sorular ve örnekler En Küçük Ortak Kat (EKOK) konusunu anlamanıza yardımcı olur. Başarılar dilerim!